Skip to content

Chapter 2 - Signal Properties

Symmetry

Worked Example 3:

Find the even and odd components a half-wave rectified sine wave, and simplify.

\[ f(t) = \begin{cases} \sin{\left(\tfrac{2\pi t}{T}\right)},\quad & 0\leq t \leq \frac{T}{2} \\ 0,\quad & \frac{T}{2} < t < T \end{cases} \qquad f(t + T) = f(t) \]
Show answer

The even and odd components are given by:

\[ \begin{cases} f_{e}(t) &= \frac{1}{2} \left|\sin{\left(\frac{2\pi t}{T}\right)}\right| \\ f_{o}(t) &= \frac{1}{2} \sin{\left(\frac{2\pi t}{T}\right)} \\ \end{cases} \]

where

\[ f(t) = f_{e}(t) + f_{o}(t) \]
Show solution

We'll solve this directly using the formula.

\[ \begin{align*} f_{e}(t) &= \tfrac{1}{2}\left[f(t) + f(-t)\right] \\ f_{o}(t) &= \tfrac{1}{2}\left[f(t) + f(-t)\right] \\ \end{align*} \]

Let's break this into the two cases:


Case 1: \(0 < t < \tfrac{T}{2}\)

\[ \Rightarrow f(t) = \sin{\left(\tfrac{2\pi t}{T}\right)},\quad f(-t) = 0 \]

For the even component

\[ \begin{align*} f_{e}(t) &= \tfrac{1}{2}\left[f(t) + f(-t)\right] \\ &= \tfrac{1}{2}\left[\sin{\left(\tfrac{2\pi t}{T}\right)} + 0 \right] \\ &= \tfrac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)} \end{align*} \]

For the odd component

\[ \begin{align*} f_{o}(t) &= \tfrac{1}{2}\left[f(t) - f(-t)\right] \\ &= \tfrac{1}{2}\left[\sin{\left(\tfrac{2\pi t}{T}\right)} - 0 \right] \\ &= \tfrac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)} \end{align*} \]

Case 2: \(\tfrac{T}{2} < t < T\)

\[ \Rightarrow f(t) = 0, \quad f(-t) = \sin{\left(-\tfrac{2\pi t}{T}\right)} = -\sin{\left(\tfrac{2\pi t}{T}\right)} \]

For the even component

\[ \begin{align*} f_{e}(t) &= \frac{1}{2}\left[f(t) + f(-t)\right] \\ &= \frac{1}{2}\left[0-\sin{\left(\tfrac{2\pi t}{T}\right)}\right] \\ &= -\frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)} \end{align*} \]

For the odd component

\[ \begin{align*} f_{o}(t) &= \frac{1}{2}\left[f(t) - f(-t)\right] \\ &= \frac{1}{2}\left[0 + \sin{\left(\tfrac{2\pi t}{T}\right)}\right] \\ &= \frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)} \end{align*} \]

Combining Cases

Now, we can combine the two cases together:

For the even component

\[ f_{e}(t) = \begin{cases} \frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)},\quad & 0 < t < \tfrac{T}{2} \\ -\frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)},\quad & \tfrac{T}{2} < t < T \\ \end{cases} \qquad f_{e}(t + T) = f_{e}(t) \]

This can be written as:

\[ f_{e}(t) = \frac{1}{2}\left| \sin{\left(\frac{2\pi t}{T}\right)}\right| \]

For the odd component

\[ f_{o}(t) = \begin{cases} \frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)},\quad & 0 < t < \tfrac{T}{2} \\ \frac{1}{2}\sin{\left(\tfrac{2\pi t}{T}\right)},\quad & \tfrac{T}{2} < t < T \\ \end{cases} \qquad f_{e}(t + T) = f_{e}(t) \]

Clearly this is

\[ f_{o}(t) = \frac{1}{2}\sin{\left(\frac{2\pi t}{T}\right)} \]

So to summarise, we have:

\[ \begin{cases} f_{e}(t) &= \frac{1}{2} \left|\sin{\left(\frac{2\pi t}{T}\right)}\right| \\ f_{o}(t) &= \frac{1}{2} \sin{\left(\frac{2\pi t}{T}\right)} \\ \end{cases} \]