Chapter 2 - Signal Properties¶
Symmetry¶
Worked Example 2:¶
Find the even and odd components of the unit pulse, and simplify.
\[
f(t) = u(t) - u(t - 1)
\]
Show answer
The even and odd components are given by:
\[
\begin{cases}
f_{e}(t) &= \frac{u(t + 1) - u(t - 1)}{2} \\
f_{o}(t) &= \frac{-u(t + 1) + 2u(t) - u(t - 1)}{2} \\
\end{cases}
\]
where
\[
f(t) = f_{e}(t) + f_{o}(t)
\]
Show solution
We'll solve this directly using the formula.
For the even component, we have:
\[
\begin{align*}
f_{e}(t) &= \tfrac{1}{2}\left[f(t) + f(-t)\right] \\
&= \tfrac{1}{2}\left[u(t) - u(t - 1) + u(-t) - u(-t-1)\right] \\
\end{align*}
\]
We know that \(u(t) + u(-t) = 1\).
\[
\begin{align*}
f_{e}(t) &= \tfrac{1}{2}\left[1 - u(-t-1) - u(t - 1)\right] \\
\end{align*}
\]
We also know that:
\[
1 - u(-(t - a)) = u(t - a)
\]
So we have
\[
\begin{align*}
f_{e}(t) &= \tfrac{1}{2}\left[1 - u(-t-1) - u(t - 1)\right] \\
&= \tfrac{1}{2}\left[\left(1 - u(-(t + 1))\right) - u(t - 1)\right] \\
&= \tfrac{1}{2}\left[u(t + 1) - u(t - 1)\right]
\end{align*}
\]
Now for the odd component:
\[
\begin{align*}
f_{o}(t) &= \tfrac{1}{2}\left[f(t) - f(-t)\right] \\
&= \tfrac{1}{2}\left[\left(u(t) - u(t - 1)\right) - \left(u(-t) - u(-t-1)\right)\right] \\
&= \tfrac{1}{2}\left[u(t) - u(t - 1) - u(-t) + u(-t - 1)\right] \\
\end{align*}
\]
We know that \(u(t) - u(-t) = 2u(t) - 1\)
\[
\begin{align*}
f_{o}(t) &= \tfrac{1}{2}\left[2u(t) - 1 - u(t - 1) + u(-t - 1)\right] \\
\end{align*}
\]
Then using \(1 - u(-(t - 1)) = u(t - 1)\) from before:
\[
\begin{align*}
f_{o}(t) &= \tfrac{1}{2}\left[2u(t) - 1 - u(t - 1) + u(-t - 1)\right] \\
&= \tfrac{1}{2}\left[- \left(1 - u(-(t + 1))\right) + 2u(t) - u(t - 1) \right] \\
&= \tfrac{1}{2}\left[- u(t + 1) + 2u(t) - u(t - 1)\right]
\end{align*}
\]