Skip to content

Chapter 2 - Signal Properties

Symmetry

Worked Example 1:

Find the even and odd components of

\[ f(t) = \cos{\left(2\pi t - \tfrac{\pi}{4}\right)} \]
Show answer

The even and odd components are given by:

\[ \begin{cases} f_{e}(t) &= \frac{\sqrt{2}}{2}\cos{\left(2\pi t\right)} \\ f_{o}(t) &= \frac{\sqrt{2}}{2}\sin{\left(2\pi t\right)} \\ \end{cases} \]

where

\[ f(t) = f_{e}(t) + f_{o}(t) \]

Method A:

Show solution

We can use a trig identity to solve this.

\[ f(t) = \cos{\left(2\pi t - \tfrac{\pi}{4}\right)} \]
\[ \cos{(a-b)} = \cos{(a)}\cos{(b)} + \sin{(a)}\sin{(b)} \]

So for this signal, we have:

\[ \begin{align*} f(t) &= \cos{\left(2\pi t - \frac{\pi}{4}\right)} \\ &= \cos{\left(2\pi t\right)}\cos{\left(\tfrac{\pi}{4}\right)} + \sin{\left(2\pi t\right)}\sin{\left(\tfrac{\pi}{4}\right)} \\ &=\frac{\sqrt{2}}{2}\cos{\left(2\pi t\right)} + \frac{\sqrt{2}}{2}\sin{\left(2\pi t\right)} \end{align*} \]

So clearly our even and odd components are:

\[ \begin{cases} f_{e}(t) &= \frac{\sqrt{2}}{2}\cos{\left(2\pi t\right)} \\ f_{o}(t) &= \frac{\sqrt{2}}{2}\sin{\left(2\pi t\right)} \\ \end{cases} \]

Method B:

Show solution

The other method for this is to use the formlas directly

\[ f(t) = \cos{\left(2\pi t - \tfrac{\pi}{4}\right)} \]

For the even component:

\[ \begin{align*} f_{e}(t) &= \tfrac{1}{2}\left(f(t) + f(-t)\right) \\ &= \tfrac{1}{2}\left(\cos{\left(2\pi t - \tfrac{\pi}{4}\right)} + \cos{\left(-2\pi t - \tfrac{\pi}{4}\right)}\right) \\ &= \tfrac{1}{2}\left(\cos{\left(2\pi t - \tfrac{\pi}{4}\right)} + \cos{\left(2\pi t +\tfrac{\pi}{4}\right)}\right) \\ \end{align*} \]

Now using the trig identity:

\[ \cos{(a)}\cos{(b)} = \tfrac{1}{2}\left(\cos{(a - b)} + \cos{(a + b)}\right) \]

We get:

\[ f_{e}(t) = \cos{\left(2\pi t\right)}\cos{\left(\tfrac{\pi}{4}\right)} = \tfrac{\sqrt{2}}{2}\cos{\left(2\pi t\right)} \]

For the odd component:

\[ \begin{align*} f_{o}(t) &= \tfrac{1}{2}\left(f(t) - f(-t)\right) \\ &= \tfrac{1}{2}\left(\cos{\left(2\pi t - \tfrac{\pi}{4}\right)} - \cos{\left(-2\pi t - \tfrac{\pi}{4}\right)}\right) \\ &= \tfrac{1}{2}\left(\cos{\left(2\pi t - \tfrac{\pi}{4}\right)} - \cos{\left(2\pi t +\tfrac{\pi}{4}\right)}\right) \\ \end{align*} \]

Now using the trig identity:

\[ \sin{(a)}\sin{(b)} = \tfrac{1}{2}\left(\cos{(a - b)} - \cos{(a + b)}\right) \]

We get:

\[ f_{o}(t) = \sin{\left(2\pi t\right)}\sin{\left(\tfrac{\pi}{4}\right)} = \tfrac{\sqrt{2}}{2}\sin{\left(2\pi t\right)} \]